
Tutorial

Platform for Machine Learning
Competitions on Data Streams

Authors:
Albert Bifet

Dihia Boulegane
Nedeljko Radulović

IEEE Big Data Cup Challenges 2019
"Real-time Machine Learning Competition on

Data Streams"

Télécom Paris
Institut Polytechnique de Paris

August 4, 2019

i

Abstract

Tutorial and Starter Pack

This document represents the supporting material for IEEE Big Data Cup
Challenge 2019 - Real-time Machine Learning Competition on Data Streams. In
this document we give instructions on how to use the dedicated platform for this
novel type of the machine learning competition. We explain how to register on
the platform, how to subscribe to a competition, how to setup your computer to
connect to secure channel in order to receive the data and as a part of the Starter
Pack we provide code examples to make your participation much easier.

If you have any additional questions which are beyond this tutorial don’t
hesitate to write to us on streaming.challenge@gmail.com.

streaming.challenge@gmail.com

ii

Contents

Abstract i

List of Abbreviations iv

1 Accessing and Registration to the platform 1

Accessing and Registration to the platform 1

2 Environment setup 4

Environment setup 4
2.1 Communication with Streaming engine 5

2.1.1 gRPC and Protobuf 5
2.1.2 .proto file . 6
2.1.3 Python . 7
2.1.4 Java . 8
2.1.5 R . 10

3 Tracking results online 13

Tracking results online 13

iii

List of Figures

1 Login dialog . 1
2 Registration dialog 1
3 Browsing through competitions 2
4 Subscribing to a competition 3
5 Platform architectures and services 4
6 .proto file example 6
7 protoc command example 7
8 Python client example 8
9 Java generated files 9
10 Java client class . 9
11 Java client example 10
12 R client example . 11
13 Live results . 14
14 Participants ranking 15

iv

List of Abbeviations

IoT
gRPC
Protobuf
JSON
CSV
API

Internet of Things
google Remote Procedure Call
Protocol Buf fers
JavaScript Object Notation
Comma Separated Values
Application Programming Interface

1

Chapter 1

1 Accessing and Registration to the
platform

The platform for Machine Learning Competitions on Data Streams provides
a user friendly web application. Users can register and browse through organized
competitions and subscribe to the ones they might be interested in. Also, once
the competition starts, it provides online leader board and real-time evaluation.

To access the web application, from your browser go to: Platform for Machine
Learning Competitions on Data Streams starting from the 5th of August, 2019.

Once you access the web application you will be offered two options:

• Sign in - if you already have an account (Figure 1)

• Register - if you don’t have an account yet (Figure 2)

Figure 1: Login dialog
Figure 2: Registration dialog

You will be asked to provide common registration information (name, email,
. . .). Afterwards, you will receive the confirmation e-mail with authentication
token, to confirm your account.

Once signed in, you will be able to browse the available competitions (active,
coming and finished) as shown in Figure 3.

http://app.streaming-challenge.com:5000/
http://app.streaming-challenge.com:5000/

2

Figure 3: Browsing through competitions

You can click on a specific competition and browse for further details as shown
in Figure 4 as follows:

1. Subscribe and Unsubscribe: You can subscribe to a competition before
it has ended, but it is highly recommended to subscribe before the beginning
in order to have time to prepare your model because if you are late with
sending predictions you will be penalized and it will significantly impact
your score.

2. Competition code: A unique code is assigned to every competition

3. Secret key: When you are subscribed to a competition a secret code will
be provided to you that will play the role of an authentication token. You
will need to copy the key in the client code and provide it alongside your
predictions for authentication purposes.

4. Information tabs: You will be able to navigate through detailed informa-
tion about the competition such as data description and evaluation metrics.
You will also be able to follow in real time your performance and global
leaderboard and ranking compared to other participants.

3

5. Stream setting: This section lays down the criteria according to which
data will be provided in the stream as follows :

• Initial batch: Number of records including true labels provided at first
to avoid cold start of learning models.
• Initial time: This is the time dedicated to the initial training phase

using the initial batch.
• Batch Size: This the the size of the regular batches that will be pro-

vided in the stream at each data release in terms of number of in-
stances.
• Time Interval: A batch of data will be released every time interval

(unit is seconds)
• Predictions interval: This determines the due data to submit predic-

tions once the batch received.

6. .proto file: There is a file describing the structure of the data records that
will be sent through the stream for every competition. You will be asked to
download and compile it to be able to read and send data in the appropriate
format.

1- Subscribe/Unsubscribe →
← 2- Competition code

← 3- Secret key

← 4- Information tabs

← 5- Stream settings

← 6- .proto file

Figure 4: Subscribing to a competition

4

Chapter 2

2 Environment setup

The platform was conceived to provide users as much freedom as possible in
choosing their own resources for building models. They can use any setup they
desire as long as they are able to connect to the secure channel and send the pre-
dictions on time and in the right format. Users are also allowed to use external
data sources if they think that can help improve their models. In this chapter we
will state all the software requirements needed to be satisfied in order to be able
to participate in the competitions.

Figure 5: Platform architectures and services

Figure 51 gives an overview of the platform’s architecture and user interaction
with different services. There are two principal components: Streaming engine
and Web application and participants will be prompted to interact with the both.
The streaming engine is responsible for ensuring bi-directional streams to provide
test and training data and receive predictions from every participant. This com-
ponent will mainly inter-operate with the developing environment (Python, Java

1https://www.flaticon.com/

5

or R) as described in Section 2.1. The web application offers a plethora of op-
tions allowing users to browse through competitions’ information and real-time
results and rankings that will be detailed in Chapter 3. The two components
communicate with each other in order to update users’ performance based on the
predictions received.

2.1 Communication with Streaming engine

Streaming engine and client communication is based on gRPC framework
with Protobuf . This combination provides secure communication, full-duplex
bidirectional streaming and an easy way to describe services. Also, this framework
is language- and platform-neutral and supports several programming languages
(Java, Python, Go, C#, Ruby).

2.1.1 gRPC and Protobuf

Users must install gRPC package and compiler for .proto file In order to be
able to communicate with the streaming engine.
gRPC is an open Remote Procedure Call(RPC) framework that can run on dif-
ferent platforms(more than 10 supported languages). It enables client and server
applications to communication and facilitates data exchange in micro-services ar-
chitectures. Google has used gRPC to build highly scalable, low latency and
distributed systems that connect services, mobile applications, real time com-
munication and IoT while at the same time ensuring efficiency in CPU use and
bandwidth.
As mentioned before, the choice of the programming language is left to the user to
decide. The only condition is that there is support for gRPC framework. gRPC
framework installation depends on your operating system and the programming
language you will be using and is given on this link.

However, you may notice that R is not supported by gRPC therefor, we pro-
vide a special package (in Starter pack) which enables the usage of R. Instructions
for installation are provided in the following sections.

Second requirement for successful communication is Protobuf. Protobuf
stands for Protocol buffers and is a language-neutral, platform-neutral, ex-
tensible way of serializing structured data for use in communications protocols
or data storage. Protobuf is thought in the same way as XML but smaller,
faster and simpler. We provide a .proto file for every competition, containing
the definition of communication services and data formats used. Instructions for
Protobuf installations are given on their GitHub repository.

After installing Protobuf, the user needs to download the .proto file from
competition page and compile it using protoc command. After that, files con-
taining data structures and classes for communication will be generated. We
explain in more details about .proto file in next Section 2.1.2.

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/overview
https://grpc.io/blog/installation/
https://github.com/protocolbuffers/protobuf

6

2.1.2 .proto file

In this section, we will explain the usage of .proto file, its syntax and the code
generated after compiling it. The .proto file is specific for every competition and
is available for download on the competition page.
The example of .proto file is shown in figure 6.

← 1 - Syntax

← 2 - Service definition

← 3 - Data format definition

Figure 6: .proto file example

An example of .proto file is shown in figure 6 and its parts explained as
follows:

1. We define its syntax and some parameters that are related for the languages
that we will be using. In this case, we show the example of .proto file that
can be used to generate code for Python and Java. For Python there are
no special requirements in this part but we define Java package name with
parameter java_package.

2. We define the service to be called, which in this case is DataStreamer. It is
defined as bi-directional streaming service since it (looking from client side)
is sending stream of Predictions and receives stream of Messages.

3. We define the data formats used for communication. In this case we define
Message and Prediction. These structures depend on the competition
and dataset used and define what type of message the client will receive
from the server (which are the fields, attributes) and in which format the
response message should be sent. Any message not corresponding to one of
the formats will not be taken into account.

7

We will show in the following sections the usage of the special protoc com-
mand to compile .proto file. We recall that this tutorial addresses Python, Java
and R Languages

2.1.3 Python

One of the most used languages for Machine Learning applications is Python.
It has dedicated libraries to handle Machine Learning tasks: scikit-learn2,
scikit-multiflow3. Therefor, this section will focus on how to use Python for
participating the competition. Alongside with this tutorial, e provide the sample
code in Python that can help in joining the competition. We strongly encourage
you to use the provided code as a baseline when starting the competition. First
step is to download the .proto file from the competition page and copy it in the
same folder with the code example that is provided with this tutorial (client.py).
In order to be able to run (client.py) properly, it is necessary to install the
following Python packages:

• grpcio

• grpcio-tools

This can be done using pip command (See the ReadMe.txt file in Python folder).
Second, it is necessary to compile the .proto file to generate classes for commu-
nication for Python. For this we use protoc command.

python -m grpc_tools.protoc -I=$SRC_DIR - -python_out=$DST_DIR -
-grpc_python_out=$DST_DIR file.proto

Figure 7: protoc command example

We show the typical usage of this command for Python in Figure 7 where we set
we set the python_out parameter, which defines in which directory compiled files
for chosen language will be placed. Afterwards, the appropriate classes and data
structures will be created, in our case:

• file_pb2.py

• file_pb2_grpc.py

In the client.py we give the example of the code which shows how to connect
to the server and receive messages and send predictions. Every user needs to put
his credentials and the address of the server with whom the communication will
be established. We highlight those parameters in the figure 8

2https://scikit-learn.org/stable/
3https://scikit-multiflow.github.io/

8

Figure 8: Python client example

After that, the main task during the competition is to edit the loop_messages
method and build the model.

2.1.4 Java

Java is also often used for Machine Learning applications since it also provides
several libraries that are dedicated for those tasks: WEKA4, MOA 5. For Java
we also provide the code example and it can be found in Java folder next to this
tutorial. We assume that you have followed the steps in section 2.1.1.
In this case you can immediately approach the provided code. We advise you to
create Maven project with root directory competition/. Go to competition page
and download the .proto file. Copy .proto to competition/src/main/proto.
Now in the project root directory competition/ run command: mvn clean
package. That command will build the project and create the classes that
will be used for communication with server. The files will be generated in
competition/target/generated_sources/protobuf, as shown in figure 9:

4https://www.cs.waikato.ac.nz/ml/weka/
5https://moa.cms.waikato.ac.nz/

9

Figure 9: Java generated files

In the Client.java we give the example of the code which shows how to
connect to the server and receive messages and send predictions. Every user needs
to put his credentials and the address of the server with whom the communication
will be established. In figure 10 we show the Java class for communication.

Figure 10: Java client class

In figure 11 we give the example of one instantiation of that Java class:

10

Figure 11: Java client example

After that, the main task during the competition is to edit the predict method
and build the model.

2.1.5 R

Except Java and Python, there is another programming language that is used
more and more for data science and data analysis tasks, that is R. R is a program-
ming language and software environment for statistical computing and graphical
analysis6. It is an interpreted language and is used from command-line but also
has several front-ends of which most important is RStudio7. R has a variety of
libraries and packages that provide statistical and graphical techniques. There
exists a variety of libraries and packages dedicated to R that provide classifica-
tion, clustering, regression techniques, linear and nonlinear modeling, time series
analysis. It is widely used by statisticians and data scientists so it was natural to
include R as one of the programming languages supported on our platform.

There is one important difference when it comes to using R for our platform.
As explained earlier, users need to connect to the server through gRPC channel
and communicate over Protobuf protocol. Both of these are not supported for
R programming language. In order to enable R for our platform, we developed
a package/wrapper that offers extended capabilities for R and allows users to
connect to gRPC server. In this way, we are able to use all power that R
possesses in terms of statistical techniques that are supported.

Since we will be using Python for communication, the first part of the setup
is the same as in the section 2.1.3. Once the .proto file has been compiled one
can switch to R environment. An important thing to mention is to copy the
files that have been generated by the protoc command to the same directory
as the wrapper provided for interconnection to Python. You will be required to

6https://cran.r-project.org/
7https://www.rstudio.com/products/rstudio/

11

install the package reticulate8. Then open the Rclient.R file, which contains
the example code for participating in the competition. User needs to provide
the path to the Python used and import three packages reticulate, jsonlite
and wRapper2(which is provided in Starter pack). First part is the same as when
using Python. Example of R code is given in figure 12:

Figure 12: R client example

Our wrapper offers several functions that are used to communicate with Python
objects:

• create_client - this function creates an object of Python class Client
which contains methods to ensure communication through gRPC and Pro-
tobuf. This function is called with user information arguments shown in
code snippet in Figure 12.

• run_client - this function starts a thread in Python that will enter a While
loop for receiving and sending messages to the server. The Client class uses
the Queue to store the messages that are received from the server and takes
the predictions from a list to send to the server.

• get_messages - this function will retrieve the messages from the Queue so
they can be processed in R.

8https://rstudio.github.io/reticulate/

12

• send_predictions - after processing the messages and making the predic-
tions using the model in R, these predictions are appended to a list for
sending to the server.

The user code in R should call the functions to create and run the object of
the Client class. After, same as in the case for Python, in a While loop user
calls functions to retrieve the messages (new instances) from the server, train the
model or make the prediction and then call the function to append the prediction
to a list for sending.

13

Chapter 3

3 Tracking results online

If you have followed all the steps described in previous sections, you should be
ready to participate in the competition. Visit competition page and check the
starting time of the competition. It is very important to start the competition
on time, so you can use all the training time to prepare your model. Once the
competition has started you will run your program and you will receive first,
training batch. This batch will contain many instances in order to give you the
opportunity to train your model. Also, this phase will last long enough so you can
tweak your model for better results. After the training phase is finished you will
start receiving regular batches, and you will be testing your model by predicting
and submitting those predictions. It is very important that you have finished
tuning your model before this part starts, otherwise you will be penalized for
every prediction that you don’t submit. Once the regular batches start arriving
and you start testing your model, you will be able to track your score and progress
on competition page. On competition page there are two sections:

• Leaderboard - graphical representation of contestants scores

• Ranking - ranking list of the contestants on selected evaluation metrics

When you are on Leaderboard section of your competition, you need to choose
the name of the target(field that you are predicting) and the name of the evalua-
tion metric used in that competition in order to see the live results, as shown in
Figure 13.

14

Figure 13: Live results

When you visit the Ranking section of your competition, you have to do the
same thing, choose the target and evaluation metric in order to see the ranking,
like in the figure 14

15

Figure 14: Participants ranking

	Abstract
	List of Abbreviations
	Accessing and Registration to the platform
	Accessing and Registration to the platform
	Environment setup
	Environment setup
	Communication with Streaming engine
	gRPC and Protobuf
	.proto file
	Python
	Java
	R

	Tracking results online
	Tracking results online

